石墨烯制备

2024-05-18 22:24

1. 石墨烯制备

1.1微机械剥离法
石墨烯最早是通过微机械剥离法制得的。2004年,曼彻
斯特大学Geim等[1]用胶带从石墨上剥下少量单层石墨烯片,
成为石墨烯的发现者,并引发了新一波碳质材料的研究热潮。
该法虽然可以获得质量较好的单层和双层石墨烯,能部分满
足实验室的研究需要,但产量和效率过低,高质量的石墨烯的
规模制备成为人们追求的目标。
1.2氧化石墨还原法
近年来,人们不断的探索新方法以提高石墨烯的产量,其
中氧化还原法由于其稳定性而被广泛采用。这种方法首先制
备氧化石墨∞],先将石墨粉分散在强氧化性混合酸中,例如浓
硝酸和浓硫酸,然后加入高锰酸钾或氯酸钾强等氧化剂得到
氧化石墨,再经过超声处理得到氧化石墨烯,最后通过还原得
到石墨烯。
然而,氧化过程会导致大量的结构缺陷,这些缺陷即使经
1100℃退火也不能完全被消除,仍有许多羟基、环氧基、羰基、
羧基的残留。缺陷导致的电子结构变化使石墨烯由导体转为半导体,严重影响石墨烯的电学性能,制约了它的应用。但是
含氧基团的存在使石墨烯易于分散在溶剂中,且使石墨烯功
能化,易于和很多物质反应,使石墨烯氧化物成为制备石墨烯
功能复合材料的基础。1.3石 墨层间化合物途径
石墨插层复合物是以天然鳞片石墨为原料,通过在层间
插入非碳元素的原子、分子、离子甚至原子团使层间距增大,
层间作用力减小,形成层间化合物。有人曾在膨胀石墨中加
入插入剂,并利用热振动或酸处理使它部分剥离,从而得到石
墨片或石墨烯[6-8]。但该法得到的石墨烯大小不一,尺寸难以
控制。
如果某种溶剂与单层石墨的相互作用超过石墨层与层之
间的范德华力,那么即可通过嵌入溶剂将石墨层剥离开。Li
等通过热膨胀使石墨层间距增大,再用发烟硫酸插层进一步
增大层间距,最后加入四丁基氢氧化铵,经超声、离心得到稳
定分散在有机溶剂中的石墨烯[9]。借鉴分散碳纳米管的方
法,在极性有机溶剂中超声处理石墨粉也可以得到多层(<5)的石墨烯。Lotya等通过在水一表面活性剂中超声剥离石墨,
得到稳定的石墨烯悬浮液[1…。
与氧化石墨法相比,石墨插层化合物途径制得的石墨烯
结构缺陷少,质量高,但是有机溶剂和表面活性剂难以完全除
去,影响石墨烯的电学性能,而且部分有机溶剂价格昂贵。
1.4沉积生长法
沉积生长法通过化学气相沉积在绝缘表面(例如SiC)或
金属表面(例如Ni)生长石墨烯,是制备高质量石墨烯薄膜的
重要手段。有研究者通过对Si的热解吸附,实现了在以si终
止的单晶6H—SiC的(0001)面上外延生长石墨烯膜或通过真
空石墨化在单晶SiC(0001)表面外延生长石墨烯。Hannon
等[11]在SiC表面上外延生长了石墨烯膜,但是由于SiC在高
温下易发生表面重构,导致表面结构复杂,难以获得大面积、
厚度均一的石墨烯膜。Emtsev等[12]在氩气中通过前位石墨
化在si终止的SiC(0001)表面制备出了单层石墨烯薄膜,薄
膜的厚度和质量都有所提高。
近年来,以金属单晶或薄膜为衬底外延生长石墨烯膜的
研究取得很大进展。Sutter等[13]在Ru(0001)表面逐层控制地外延生长了大面积的石墨烯膜,制备过程中,首层石墨烯与
金属作用强烈,而从第二层起就可以保持石墨烯固有的电子
结构和性质。Coraux等[14]利用低压气相沉积法在Ir(111)表
面生长了单层石墨烯膜。采用类似的方法,在Cu箔表面也能
制备出大面积、高质量石墨烯膜,而且主要为单层石墨烯。而
韩国科学家则在多晶Ni薄膜上外延生长了石墨烯膜[1…,他们
先在si-sio§衬底上生长出300nm厚的Ni,然后在1000(C的
甲烷气氛中加热

石墨烯制备

2. 石墨烯复合材料是什么?

石墨烯复合材料包括哪些?  
 聚苯胺石墨烯复合材料,氧化石墨烯基超高分子量聚乙烯(UH定WPE)复合材料,金属石墨烯复合材料,近年石墨烯的开发非常的火热。
  石墨烯属于哪种材料呀?是无极非金属还是复合材料?  
 紫砂、陶瓷都是无机非金属材料
  聚丙烯和石墨烯复合材料干什么用  
 聚丙烯和石墨烯复合材料干什么用
 
 石墨烯增强PE/PP复合材料中PE树脂层的制备方法。首先将石墨烯粉末进行表面处理剂改性后,干燥后形成稳定分散的改性石墨烯粉末;再将改性石墨烯粉末同聚乙烯和改性母料(改性聚乙烯)机械剪切共混,得到混合均匀的复合料,最后通过挤出机热切粒法进行塑化造粒,得到石墨烯增强聚乙烯树脂材料。本发明将改性石墨烯粉末引入到聚乙烯树脂层中,因此这种改性石墨烯增强PE/PP复合材料中PE树脂层具有及其优异的机械性能并且增加了抗静电、微波吸收及电磁屏蔽等新附加功能。
 
  
  石墨烯可以像碳纤维一样制成复合材料吗  
 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp混成轨域呈蜂巢晶格(honeyb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾)。石墨烯被认为是平面多环芳香烃原子晶体。
  石墨烯为什么要与无机物制备复合材料  
 1,扫描电镜看的是样品的局部区域,可能你看到的样品区域刚好就没有石墨烯。
 
 2,你的样品为符合才能,可能在复合材料制备过程中,石墨烯的结构已经被破坏,所以看不到。
 
 3,复合材料中的石墨烯含量本身就极少,需要在SEM下找很多区域,也许能看到。
 
 .基于石墨烯的纳米复合材料在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出许多优良性能,具有广阔的应用前景.目前研究的石墨烯复合材料主要有石墨烯/聚合物复合材料和石墨烯/无机物复合材料两类,其制备方法主要有共混法、溶胶-凝胶法、插层法和原位聚合法.本文将对石墨烯的纳米复合材料及其性能等方面进行简要的综述.
 
 一、基于石墨烯的复合物
 
 利用石墨烯优良的特性与其它材料复合可赋予材料优异的性质.如利用石墨烯较强的机械性能,将其添加到高分子中,可以提高高分子材料的机械性能和导电性能;以石墨烯为载体负载纳米粒子,可以提高这些粒子在催化、传感器、超级电容器等领域中的应用.
 
 1.1 石墨烯与高聚物的复合物
 
 功能化后的石墨烯具有很好的溶液稳定性,适用于制备高性能聚合物复合材料.根据实验研究,如用异氰酸酯改性后的氧化石墨烯分散到聚苯乙烯中,还原处理后就可以得到石墨烯-聚苯乙烯高分子复合物.该复合物具有很好的导电性,添加体积分数为1%的石墨烯时,常温下该复合物的导电率可达0.1S/M,可在导电材料方面得到的应用.
 
 添加石墨烯还可显著影响高聚物的其它性能,如玻璃化转变温度(Tg)、力学和电学性能等.例如在聚丙稀腈中添加质量分数约1%的功能化石墨烯,可使其Tg提高40℃.在聚甲基丙烯酸甲酯(PMMA)中仅添加质量分数0.05%的石墨烯就可以将其Tg提高近30℃.添加石墨烯的PMMA比添加膨胀石墨和碳纳米管的PMMA具有更高的强度、模量以及导电率.在聚乙烯醇(PVA)和PMMA中添加质量分数0.6%的功能化石墨烯后,其弹性模量和硬度有明显的增加.在聚苯胺中添加适量的氧化石墨烯所获得的聚苯胺-氧化石墨烯复合物的电容量(531F/g)比聚苯胺本身的电容量(约为216F/g)大1倍多,且具有较大的拉伸强度(12.6MPa).这些性能为石墨烯-聚苯胺复合物在超级电容器方面的应用创造了条件.
  石墨烯基复合材料  
 简单来讲,碳纤维和石墨稀互为同素异形体两者是都由碳原子构成的单质,但碳原子的排列方式不同碳纤维 (carbon fibre),顾名思义,它不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维.与传...
  环氧树脂/石墨烯复合材料怎么制备  
 环氧树脂/石墨烯复合材料怎么制备
 
 一种石墨烯/环氧树脂复合材料的制备方法,它涉及环氧树脂复合材料的制备方法。本发明的目的是要解决现有环氧树脂存在脆性大、抗冲击性差和易发生开裂现象的问题。步骤:一、化学氧化法制备石墨烯;二、石墨烯在环氧树脂中的分散;三、复合。优点:一、本发明制备方法简单,采用乙醇作为溶剂,避免使用有机溶剂,更加环保,而且乙醇易挥发易排除,对石墨烯/环氧树脂复合材料的制备不产生影响;二、与纯环氧树脂相比,本发明制备的石墨烯/环氧树脂复合材料拉伸强度提高了34.9%~124.8%,冲击强度提高了15.4%~105.1%,玻璃化转变温度提高了5℃~19℃。本发明可获得一种石墨烯/环氧树脂复合材料的制备方法。
  石墨烯复合什么铁氧体最简单  
 聚苯胺石墨烯复合材料,
 
 氧化石墨烯基超高分子量聚乙烯(UHMWPE)复合材料,金属石墨烯复合材料,近年石墨烯的开发非常的火热。

3. 石墨烯的制备

1. 微机械剥离法

氧等离子束先在高定向热解石墨表面,用光刻胶将其粘到玻璃衬底上进行焙烧,再用透明胶反复地从石墨上剥离出石墨薄片,放入丙酮溶液中超声振荡,再将单晶硅片放入丙酮溶剂中,,单层石墨烯会吸附在硅片上,从而成功地制备出单层的石墨烯。

优点:该方法简单易行,不需要苛刻的实验条件,得到的石墨烯晶体结构较好,缺陷少,质量高。

缺点:是石墨烯的生产效率极低,仅限于实验室的基础研究。

2. 外延生长法

以单晶6H-SiC 为原料,利用氢气刻蚀处理后,再在高真空下通过电子轰击加热,除去氧化物;热分解去除其中的Si,在单晶(0001)面上分解出石墨烯。

优点:该方法制备的石墨烯电导率较高,适用于对电性能要求较高的电子器件。

缺点:会产生难以控制的缺陷以及多晶畴结构,大面积制备困难。此外,制备条件苛刻、成本高。

3. 石墨插层法

以天然鳞片石墨为原料,用碱金属元素为插层剂,通过插层剂与石墨混合反应得到石墨层间化合物。将一个电子输入石墨晶格中,使得石墨晶体容易发生剥离分开。最后通过超声和离心处理得到石墨烯片。

优点:制备方法相对简单,制备速度快,效率高

缺点:难以得到单层,且加入的插层物质会破坏石墨烯的sp2 杂化结构,使得石墨烯的物理和化学性能受到影响。

4. 溶液剥离法

溶剂剥离法是将石墨分散于溶剂中,利用超声或高速剪切等作用将溶剂插入石墨层间,进行层层剥离,制备出石墨烯。

优点:能得到优质石墨烯。

缺点:是产率很低,不适合大规模生产和商业应用。

5. 化学气相沉积法(CVD)

石墨在较高温度条件下呈气态发生化学反应,退火生成石墨烯沉积在金属基体表面。

优点:能够高质量大规模生成石墨烯。

缺点:不适合制备大规模石墨烯宏观粉体。此外,通过化学腐蚀分离石墨烯与基底金属,需要消耗大量的酸,会对环境产生巨大的污染,成本高。

6. 氧化还原法

首先利用强氧化剂处理石墨,形成亲水性的含氧基团,;然后利用超声方法剥离氧化石墨,,使石墨氧化物片迅速剥离得到单层的氧化石墨烯;最后,在高温或者在还原性溶液中对氧化石墨烯进行还原反应,还原除去氧化石墨烯表面的含氧基团,恢复二维结构石墨烯。

优点:氧化还原法可以大量、高效地制备出高质量的石墨烯,过程相对简单。

石墨烯的制备

4. 石墨烯的制备,新材料大功能

    导语:社会在不断地发展,科技的脚步从不曾停下,我们生活的世界里所有东西都在朝更快速、更便捷的方向发展。科学家们通过一些物理反应或化学合成,制造出不同的材料,以建造更薄运行更快速的产品。石墨烯广泛运用于电子产品制造,它的制备方法也是多种多样,本文就为您介绍它的物理制备方法和化学制备方法。
  



  一、物理法制备石墨烯
  物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得, 操作相对简单,合成的石墨烯的纯度高、缺陷较少。
  



  取向附生法—晶膜生长
  Peter W.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80 %后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。
  



  二、化学法制备石墨烯
  目前实验室用石墨烯主要通过化学方法来制备,该法最早以苯环或其它芳香体系为核,通过多步偶联反应使苯环或大芳香环上6个C均被取代,循环往复,使芳香体系变大,得到一定尺寸的平面结构的石墨烯。在此基础上人们不断加以改进,使得氧化石墨还原法成为最具有潜力和发展前途的合成石墨烯及其材料的方法。除此之外,化学气相沉积法和晶体外延生长法也可用于大规模制备高纯度的石墨烯。
  



    很多我们使用的产品都是合成材料制成的,而这些合成材料是科学家们经过不断的尝试通过物理制备或者化学制备的方法制成,使用在生活中,为人们的生活提供了方便。石墨烯是从石墨中提炼出的,而制备的方法是多种多样,本文为您介绍了石墨烯的物理制备方法以及化学制备方法,希望您对这种材料的制备方法有更多的了解。

5. 石墨烯的制备方法

目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等。以化学气相沉积法(CVD)为例:所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术】。目前,以CVD法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。

石墨烯的制备方法

6. 石墨烯的主要制备方法

目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等。以化学气相沉积法(CVD)为例:所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术】。目前,以CVD法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。

7. 石墨烯制备方法

目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等。以化学气相沉积法(CVD)为例:所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术】。目前,以CVD法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。

石墨烯制备方法

8. 石墨烯主要制备方法

目前石墨烯制备方法主要包括化学气相沉积法、溶剂剥离法、氧化还原法、微机械剥离法、外延生长法、电弧法、有机合成法、电化学法等。以化学气相沉积法(CVD)为例:所谓CVD法,指的是反应物质于气态条件下产生化学反应,进而在加热固态基体表生成固态物质,从而实现固体材料的制成的工艺技术】。目前,以CVD法进行石墨烯制备时通过将碳氢化合物等含碳气体通入以镍为基片、管状的简易沉积炉中,通过高温将含碳气体分解为碳原子使其沉积于镍的表面,进而形成石墨烯,再通过轻微化学刻蚀来使镍片与石墨烯薄膜分离,从而获得石墨烯薄膜。该薄膜处于透光率为80%的状态下时其导电率便高达1.1×106S/m。通过CVD法可制备出大面积高质量石墨烯,但单晶镍价格则过于昂贵,该方法可满足高质量、规模化石墨烯的制备要求,但工艺复杂,成本高,使得该方法的广泛应用受到限制。