高一生物——基因的分离定律

2024-05-18 00:46

1. 高一生物——基因的分离定律


高一生物——基因的分离定律

2. 生物高中基因分离定律

1.在分离定律中,F1(Dd)产生配子时,由于等位基因分离,形成了2种数量相等的雌配子(D、d)和2种数量相等的雄配子(D、d),雌雄配子随机结合,形成了1/4DD、1/4Dd、1/4Dd、1/4dd,又由于显性基因对隐性基因的掩盖作用,1/4DD、2/4Dd都表现为显性性状,所以后代出现了“3︰1”的性状分离比。其形成的主要原因是,等位基因分离和显性基因对隐性基因的掩盖作用(完全显性)。性状分离比是等位基因分离、完全显性等条件共同作用的结果。
2.自由组合定律中性状分离比的原因
自由组合定律是分离定律在“量”上的拓展和延伸,形成分离比的原因包括了分离定律中形成分离比的所有原因,还有一个原因是非同源染色体上的非等位基因的自由组合。
3. 连锁和交换定律中性状分离比的原因
分离定律也是连锁交换定律的基础,分离比的原因包括了分离定律中形成分离比的所有原因。自由组合定律F1产生配子时,各类配子的比率是相同的;但是连锁交换定律中F1产生配子时,由于性母细胞一部分不交换、一部分交换,交换又包括单交换、双交换等,交换性母细胞的种类和交换率是连锁交换定律中分离比形成的重要原因。

3. 高中生物基因分离定律问题

圆眼长翅:圆眼残翅=5:2,
如果圆眼长翅没有致死的话,应该是圆眼长翅:圆眼残翅=3:1,也就是6:2,
由于基因型为BBXAXA或BBXAXa的个体致死,
所以圆眼长翅:圆眼残翅=5:2.

高中生物基因分离定律问题

4. 高中生物,基因的分离定律

自交一代,杂合子,纯合子各占一半。再自交,纯合子不变,杂合子的一半变为纯合子,一半变为杂合子。依此类推。1-(0.5+0.5*0.5+0.5*0.5*0.5)=0.125
 
或者不怕麻烦都写出来
第一代 Aa
第二代 AA(1/4)Aa(1/2) aa(1/4)
又因为纯合子(AA.aa)的后代都是纯合子,
而Aa(1/2)的第三代为
AA(3/8)Aa(1/4) aa(3/8)
第四代为
AA(7/16)Aa(1/8) aa(7/16)

5. 高中生物关于基因分离定律的题,求解

1、首先判断黑毛和白毛的显隐性关系:由黑毛雌鼠乙与白毛雄鼠交配丙交配,乙生7窝共15只黑毛豚鼠可知黑毛是显性性状。
    2、再根据亲本的表现型写出它们的有关基因组成:甲A --,乙A --,丙aa。
    3、最后根据它们的子代中都有白毛性状(aa),可知甲、乙、丙都有a基因,所以甲、乙、丙的基因型分别是Aa、AA、aa。

高中生物关于基因分离定律的题,求解

6. 高中生物:有关基因分离定律的一个小问题,急急急急急急急急急急急急急急急急急急急急急急急急急急急急

由于显性基因对隐性基因有显性作用,如果A基因发生突变而变为a基因,这时无芒的纯合子父本AA产生含a的配子,当遇a的雌配子时,形成受精卵aa,将来发育的植株表现出隐性性状,所以最佳的杂交组合为父本为显性纯合子,母本为隐性纯合子组。
A项突变前,子代绝无有芒,突变后有一部分是有芒。前后变化巨大。
B项突变前,子代一半有芒,突变后超过一半有芒。前后变化不大。

7. 如何学好高一生物必修2基因分离定律??

高一生物必修2基因分离定律知识点梳理

(三)花粉鉴定法:
1、过程:非糯性与糯性水稻的花粉遇碘呈现不同的颜色,取F1的花粉放在载玻片上,加一滴碘液,并用显微镜观察。
2、结果:一半花粉呈蓝黑色,一半花粉呈橙红色。
3、结论:基因分离定律是正确的。
注:自交法和花粉鉴定法适用于植物体;测交法对动物和植物体均可采用。
七、基因分离定律的实质:基础为(等位基因)独立性;本质为(等位基因)分离性
基因分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
(一)该定律适用于:⒈真核生物;⒉有性生殖的生物;⒊细胞核遗传;⒋一对相对性状的遗传。
(二)等位基因的存在:它们虽然共同存在于一个细胞内,但它们分别位于一对同源染色体上,具有一定的独立性。
注意:
1、在生物的体细胞中,控制性状的基因都是成对存在的,这里所说的生物指哪种生物?
2、同源染色体上相同位置上的基因一定是等位基因吗?
3、一对同源染色体上只能有一对等位基因吗?
(三)基因分离与性状分离比较:性状分离是杂种后代(F2)中显现不同性状的现象;基因分离是指(F1形成配子时)等位基因在减Ⅰ后期随同源染色体的分开而分离。基因分离是性状分离的原因,性状分离是基因分离的 结果。
(四)配子结合的概率:受精时,雌雄配子结合机会均等,F2才会出现三种基因型、两种表现型。
(五)细胞学基础:减数第一次分裂的后期同源染色体的分离。
分离的实质:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。
八、表现型和基因型的一般推断:
(一)由亲代推断子代的基因型、表现型(正推法)
亲本组合子代基因型及比例子代表现型及比例AA×AAAA全是显性AA×AaAA:Aa=1:1全是显性AA×aaAa全是显性Aa ×AaAA:Aa:aa=1:2:1显性:隐性=3:1Aa×aaAa:aa=1:1显性:隐性=1:1aa×aaaa全是隐性(二)由子代推断亲代的基因型、表现型(逆推法)
后代表现型亲本基因型组合亲本表现型全是显性AA× 亲本中一定有一个是显性纯合子全是隐性aa×aa双亲均为隐性纯合子显性:隐性=1:1Aa×aa亲本一方是显性杂合子,一方是隐性纯合子显性:隐性=3:1Aa ×Aa双亲均为显性杂合子
(1)若后代性状分离比为显:隐=3 :1,则双亲一定都是杂合子(Aa)即Aa×Aa→3A_:1 aa
(2)若后代性状分离比为显:隐=1 :1,则双亲一定是测交类型。即为Aa×aa→1Aa :1 aa
(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。即AA×AA 或AA×Aa 或AA×aa
(4)若后代性状只有隐性性状,则双亲均为隐性纯合子,即为aa×aa→aa
注:推断时首先要考虑纯合子,特别是隐性纯合子(隐性纯合突破法)
1、如果亲代中有显性纯合子(如:AA),则子代一定为显性性状(如:A )
例:AA×亲本→A (显性)
2、如果亲代中有隐性纯合子(如:aa),则子代中一定含有遗传因子a
例:aa×亲本→ a
3、如果子代中有纯合子(AA或aa),则两个亲本都至少含有一个遗传因子A或a
例: a× a→aa 或 A ×A →AA
九、显隐性性状的判断的方法:
(一)根据定义判断:
具有一对相对性状的两亲本杂交,后代只表现出一种性状,表现出的性状为显性性状。
若A×B→A,则A为显性,B为隐性 例:高×矮 → 高 则高为显性,矮为隐性
(二)根据性状分离现象判断:
具有相同性状的两亲本杂交,后代出现性状分离,则分离出来的性状为隐性性状,亲本为显性性状。
若A×A→3A + 1B,则A为显性,B为隐性 例:高×高 → 3高 + 1矮 则高为显,矮为隐
(三)通过遗传图谱判断显隐性:
双亲正常,而子代有患病个体 双亲患病,而子代有正常个体
(无中生有为隐性) (有中生无为显性)
(四)以上方法无法判断的,可用假设法。注意要对两种性状同时做假设或对同一性状做两种假设。
十、杂合子和纯合子的鉴别方法:(判断某显性性状的个体的基因型)设A,B为相对性状的个体:
若后代无性状分离,则待测个体为纯合子 即A×B→只有A,则A为纯合子。
(一)测交法
(植物,动物) 若后代有性状分离,则待测个体为杂合子 即A×B→A、B均出现,则A为杂合子。
若后代无性状分离,则待测个体为纯合子 即A×A→A,则A为纯合子
(二)自交法
(雌雄同花的植物, 若后代有性状分离,则待测个体为杂合子 即A×A→A、B均出现,则A为杂合子
最简便)
十一、基因分离定律在理论及实践中的应用
(一)育种方面:选种。选显性性状,要连续自交直至后代不发生性状分离;选隐性性状,直接选取即可(隐性性状表达后,其基因型为纯种)。
(二)医学实践方面:1、遗传病:白化病等。2、血型。3、优生:显性遗传病控制生育。隐性遗传病禁止近亲结婚。
(三)解释生物多样性的原因。
十二、基因分离定律中的解题思路
(一)遗传比率的决定主要根据概率的两个基本原理。
1、乘法原理:相互独立事件同时出现的概率为各独立事件概率的乘积。
2、加法原理:互斥事件有关的事件出现的概率等于各相关互斥事件的概率的和。可表示为:甲发生的概率×乙不发生的概率+乙发生的概率×甲不发生的概率
(二)自由交配与自交
1、概念不同:
(1)自由交配:各种基因型之间均可交配(群体中的个体随机进行交配),子代情况应将各自由交配后代的全部结果一并统计 (自由交配的后代情况多用基因频率的方法计算)
(2)自交:指基因型相同的生物体间相互交配,植物体中指自花授粉和雌雄异花的同株授粉。

如何学好高一生物必修2基因分离定律??

8. 高一生物必修2基因分离定律知识点有哪些?

高一生物必修2基因分离定律知识点梳理

(三)花粉鉴定法:
1、过程:非糯性与糯性水稻的花粉遇碘呈现不同的颜色,取F1的花粉放在载玻片上,加一滴碘液,并用显微镜观察。
2、结果:一半花粉呈蓝黑色,一半花粉呈橙红色。
3、结论:基因分离定律是正确的。
注:自交法和花粉鉴定法适用于植物体;测交法对动物和植物体均可采用。
七、基因分离定律的实质:基础为(等位基因)独立性;本质为(等位基因)分离性
基因分离定律:在生物的体细胞中,控制同一性状的遗传因子成对存在,不相融合;在形成配子时,成对的遗传因子发生分离,分离后的遗传因子分别进入不同的配子中,随配子遗传给后代。
(一)该定律适用于:⒈真核生物;⒉有性生殖的生物;⒊细胞核遗传;⒋一对相对性状的遗传。
(二)等位基因的存在:它们虽然共同存在于一个细胞内,但它们分别位于一对同源染色体上,具有一定的独立性。
注意:
1、在生物的体细胞中,控制性状的基因都是成对存在的,这里所说的生物指哪种生物?
2、同源染色体上相同位置上的基因一定是等位基因吗?
3、一对同源染色体上只能有一对等位基因吗?
(三)基因分离与性状分离比较:性状分离是杂种后代(F2)中显现不同性状的现象;基因分离是指(F1形成配子时)等位基因在减Ⅰ后期随同源染色体的分开而分离。基因分离是性状分离的原因,性状分离是基因分离的 结果。
(四)配子结合的概率:受精时,雌雄配子结合机会均等,F2才会出现三种基因型、两种表现型。
(五)细胞学基础:减数第一次分裂的后期同源染色体的分离。
分离的实质:在杂合体的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性,在减数分裂形成配子的过程中,等位基因会随同源染色体的分开而分离,分别进入两个配子中,独立地随配子遗传给后代。
八、表现型和基因型的一般推断:
(一)由亲代推断子代的基因型、表现型(正推法)
亲本组合子代基因型及比例子代表现型及比例AA×AAAA全是显性AA×AaAA:Aa=1:1全是显性AA×aaAa全是显性Aa ×AaAA:Aa:aa=1:2:1显性:隐性=3:1Aa×aaAa:aa=1:1显性:隐性=1:1aa×aaaa全是隐性(二)由子代推断亲代的基因型、表现型(逆推法)
后代表现型亲本基因型组合亲本表现型全是显性AA× 亲本中一定有一个是显性纯合子全是隐性aa×aa双亲均为隐性纯合子显性:隐性=1:1Aa×aa亲本一方是显性杂合子,一方是隐性纯合子显性:隐性=3:1Aa ×Aa双亲均为显性杂合子
(1)若后代性状分离比为显:隐=3 :1,则双亲一定都是杂合子(Aa)即Aa×Aa→3A_:1 aa
(2)若后代性状分离比为显:隐=1 :1,则双亲一定是测交类型。即为Aa×aa→1Aa :1 aa
(3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。即AA×AA 或AA×Aa 或AA×aa
(4)若后代性状只有隐性性状,则双亲均为隐性纯合子,即为aa×aa→aa
注:推断时首先要考虑纯合子,特别是隐性纯合子(隐性纯合突破法)
1、如果亲代中有显性纯合子(如:AA),则子代一定为显性性状(如:A )
例:AA×亲本→A (显性)
2、如果亲代中有隐性纯合子(如:aa),则子代中一定含有遗传因子a
例:aa×亲本→ a
3、如果子代中有纯合子(AA或aa),则两个亲本都至少含有一个遗传因子A或a
例: a× a→aa 或 A ×A →AA
九、显隐性性状的判断的方法:
(一)根据定义判断:
具有一对相对性状的两亲本杂交,后代只表现出一种性状,表现出的性状为显性性状。
若A×B→A,则A为显性,B为隐性 例:高×矮 → 高 则高为显性,矮为隐性
(二)根据性状分离现象判断:
具有相同性状的两亲本杂交,后代出现性状分离,则分离出来的性状为隐性性状,亲本为显性性状。
若A×A→3A + 1B,则A为显性,B为隐性 例:高×高 → 3高 + 1矮 则高为显,矮为隐
(三)通过遗传图谱判断显隐性:
双亲正常,而子代有患病个体 双亲患病,而子代有正常个体
(无中生有为隐性) (有中生无为显性)
(四)以上方法无法判断的,可用假设法。注意要对两种性状同时做假设或对同一性状做两种假设。
十、杂合子和纯合子的鉴别方法:(判断某显性性状的个体的基因型)设A,B为相对性状的个体:
若后代无性状分离,则待测个体为纯合子 即A×B→只有A,则A为纯合子。
(一)测交法
(植物,动物) 若后代有性状分离,则待测个体为杂合子 即A×B→A、B均出现,则A为杂合子。
若后代无性状分离,则待测个体为纯合子 即A×A→A,则A为纯合子
(二)自交法
(雌雄同花的植物, 若后代有性状分离,则待测个体为杂合子 即A×A→A、B均出现,则A为杂合子
最简便)
十一、基因分离定律在理论及实践中的应用
(一)育种方面:选种。选显性性状,要连续自交直至后代不发生性状分离;选隐性性状,直接选取即可(隐性性状表达后,其基因型为纯种)。
(二)医学实践方面:1、遗传病:白化病等。2、血型。3、优生:显性遗传病控制生育。隐性遗传病禁止近亲结婚。
(三)解释生物多样性的原因。
十二、基因分离定律中的解题思路
(一)遗传比率的决定主要根据概率的两个基本原理。
1、乘法原理:相互独立事件同时出现的概率为各独立事件概率的乘积。
2、加法原理:互斥事件有关的事件出现的概率等于各相关互斥事件的概率的和。可表示为:甲发生的概率×乙不发生的概率+乙发生的概率×甲不发生的概率
(二)自由交配与自交
1、概念不同:
(1)自由交配:各种基因型之间均可交配(群体中的个体随机进行交配),子代情况应将各自由交配后代的全部结果一并统计 (自由交配的后代情况多用基因频率的方法计算)
(2)自交:指基因型相同的生物体间相互交配,植物体中指自花授粉和雌雄异花的同株授粉。